所以到了这一层面后,亦可以极为粗糙的将共尾数,视作为不同层次间的强度度量衡量标尺。
而距离这共尾w的一系列所有世界基数‘最近’的更高共尾数层面,便是与ℵ₁等势的w1。
在此之上,还有与ℵ₂等势的w₂、与ℵ₁₀等势的w₁₀、与ℵ₁₀₀等势的w₁₀₀……等等各类各样差距更是巨大到了完全没有边的共尾数。
这些具备不同共尾数的各类世界基数,亦通常会被命名为带有各种复杂前缀名或者后缀名的称呼。
并且,被这些各级各阶每一个共尾数所‘统治’的庞大‘领土’之内的那些个各级各阶世界基数互相之间,亦会存在有无穷无尽复无尽无穷恐怖到无法言说无法形容的巨大差距。
而若想要跨越这一重又一重天渊之距,则又会牵涉到所谓「无界闭集」的数学概念。
关于此概念,还有一个较为简单的名为「无界集合」的前置型概念。
对于此概念若举例说明便是,譬如位于w范畴内的自然数在w中无界,又因w=N,所以N便是w的无界非真子集。(「无界」概念的具体定义详见677章)
既然存在‘非真’,那么就肯定会存在‘真’。
譬如,对任意n∈w仍有n 1∈w,无存最大自然数,所以全体正偶数便是w的真无界子集。
这个概念比较简单,但在此之上的「无界闭集」概念就要考虑的多…不是,是复杂的多了。
还是举例说明。
譬如,若c是x无界子集,对所有极限序数呈a
喜欢属性无限暴涨,我横压多元请大家收藏:(www.59wxw.com)属性无限暴涨,我横压多元59文学网更新速度全网最快。